Power Calculator

DC Power Calculator

Enter any 2 known values and press “Calculate” to solve for the others:

Power factor calculator

DC Power Calculation

Voltage (V) calculation from current (I) and resistance (R):

V(V) = I(A) × R(Ω)

Power (P) calculation from voltage (V), current (I) and resistance (R):

P(W) = V(V) * I(A) = V 2(V) / R(Ω) = I 2(A) * R(Ω)

AC Power Calculator

Enter 2 magnitudes + 2 phase angles to get the other values and press the “Calculate” button:

AC Power Calculation

The voltage V in volts (V) is eqaul to the current I in amps (A) times the impedance Z in ohms (Ω):

Vrms(V) = Irms(A) × Z(Ω) ∠ (θI + θZ)

The angle (θV – θI) = θZ = φ is the phase angle of the load impedance and is often referred to as the power factor angle.

  • θV is the voltage phase angle.
  • θI is the current phase angle.

The load impedance Z may be written as:

Z = Vrms / Irms ∠ (θV – θI)

The complex power S in volt-amps (VA) is equal to the voltage V in volts (V) times the current I in amps (A):

S(VA) = P + jQ = Vrms(V) × Irms(A) ∠ (θV – θI)

The real power P in watts (W) is equal to the voltage V in volts (V) times current I in amps (A) times the power factor (cos φ):

P(W) = Vrms(V) × Irms(A) × cos (θV – θI) = Vrms(V) × Irms(A) × cos φ,

where φ = θV – θI is the phase angle between the current and voltage.

The product Vrms * Irms is referred to as the apparent power.

The reactive power Q in volt-amps reactive (VAR) is equal to the voltage V in volts (V) times the current I in amps (A) time the sine of the complex power phase angle (φ):

Q(VAR) = Vrms(V) × Irms(A) × sin (θV – θI) = Vrms(V) × Irms(A) × sin φ,

where φ = θV – θI is the phase angle between the current and voltage.

The power factor (PF) is equal to the absolute value of the cosine of the complex power phase angle (φ):

PF = |cos φ|

See Also

About The Author